Variables in Caesar.jl
You can check for the latest variable types by running the following in your terminal:
using RoME, Caesar
subtypes(IncrementalInference.InferenceVariable)
IncrementalInference.getCurrentWorkspaceVariables()
More variables and factors exists, but are not yet included in the standard library. It is fairly straight forward to build your own out-of-library factors, see page Creating New Variables and Factors for more details.
Default variables in IncrementalInference
IncrementalInference.ContinuousScalar
— Typestruct ContinuousScalar <: InferenceVariable
Most basic continuous scalar variable in a ::DFG.AbstractDFG
object.
DevNotes
- TODO Consolidate with ContinuousEuclid{1}
IncrementalInference.ContinuousEuclid
— TypeContinuousEuclid{N}
Continuous Euclidean variable of dimension N
.
2D Variables
The current variables types are:
RoME.Point2
— Typestruct Point2 <: InferenceVariable
XY Euclidean manifold variable node softtype.
RoME.Pose2
— Typestruct Pose2 <: InferenceVariable
Pose2 is a SE(2) mechanization of two Euclidean translations and one Circular rotation, used for general 2D SLAM.
RoME.DynPoint2
— Typestruct DynPoint2 <: InferenceVariable
Dynamic point in 2D space with velocity components: x, y, dx/dt, dy/dt
RoME.DynPose2
— Typestruct DynPose2 <: InferenceVariable
Dynamic pose variable with velocity components: x, y, theta, dx/dt, dy/dt
Note
- The
SE2E2_Manifold
definition used currently is a hack to simplify the transition to Manifolds.jl, see #244
3D Variables
RoME.Point3
— Typestruct Point3 <: InferenceVariable
XYZ Euclidean manifold variable node softtype.
Example
p3 = Point3()
RoME.Pose3
— Typestruct Pose3 <: InferenceVariable
Pose3 is currently a Euler angle mechanization of three Euclidean translations and three Circular rotation.
Future:
- Work in progress on AMP3D for proper non-Euler angle on-manifold operations.
- TODO the AMP upgrade is aimed at resolving 3D to Quat/SE3/SP3 – current Euler angles will be replaced
RoME.InertialPose3
— Typemutable struct InertialPose3 <: AbstractRelativeRoots
Inertial Odometry version of preintegration procedure and used as a factor between InertialPose3 types for inertial navigation in factor graphs.
Please open an issue with JuliaRobotics/RoME.jl for specific requests, problems, or suggestions. Contributions are also welcome. There might be more variable types in Caesar/RoME/IIF not yet documented here.
Factors in Caesar.jl
You can check for the latest factor types by running the following in your terminal:
using RoME, Caesar
println("- Singletons (priors): ")
println.(sort(string.(subtypes(IIF.AbstractPrior))));
println("- Pairwise (variable constraints): ")
println.(sort(string.(subtypes(IIF.AbstractRelativeRoots))));
println("- Pairwise (variable minimization constraints): ")
println.(sort(string.(subtypes(IIF.AbstractRelativeMinimize))));
Priors (Absolute Data)
Defaults in IncrementalInference.jl:
IncrementalInference.Prior
— Typestruct Prior{T<:SamplableBelief} <: AbstractPrior
Default prior on all dimensions of a variable node in the factor graph. Prior
is not recommended when non-Euclidean dimensions are used in variables.
IncrementalInference.PartialPrior
— Typestruct PartialPrior{T<:SamplableBelief, P<:Tuple} <: AbstractPrior
Partial prior belief (absolute data) on any variable, given <:SamplableBelief
and which dimensions of the intended variable.
Some of the most common priors (unary factors) in Caesar.jl/RoME.jl include:
RoME.PriorPolar
— Typemutable struct PriorPolar{T1<:SamplableBelief, T2<:SamplableBelief} <: AbstractPrior
Prior belief on any Polar related variable.
RoME.PriorPoint2
— Typemutable struct PriorPoint2{T<:SamplableBelief} <: AbstractPrior
Direction observation information of a Point2
variable.
RoME.PriorPose2
— Typemutable struct PriorPose2{T} <: AbstractPrior
Introduce direct observations on all dimensions of a Pose2 variable:
Example:
PriorPose2( MvNormal([10; 10; pi/6.0], Matrix(Diagonal([0.1;0.1;0.05].^2))) )
RoME.PriorPoint3
— Typemutable struct PriorPoint3{T} <: AbstractPrior
Direction observation information of a Point3
variable.
RoME.PriorPose3
— Typemutable struct PriorPose3{T<:SamplableBelief} <: AbstractPrior
Direct observation information of Pose3
variable type.
Relative Likelihoods (Relative Data)
Defaults in IncrementalInference.jl:
IncrementalInference.LinearRelative
— Typestruct LinearRelative{N, T<:SamplableBelief} <: AbstractRelativeRoots
Default linear offset between two scalar variables.
\[X_2 = X_1 + η_Z\]
Existing n-ary factors in Caesar.jl/RoME.jl/IIF.jl include:
RoME.PolarPolar
— Typemutable struct PolarPolar{T1<:SamplableBelief, T2<:SamplableBelief} <: AbstractRelativeRoots
Linear offset factor of IIF.SamplableBelief
between two Polar
variables.
RoME.Point2Point2
— Typemutable struct Point2Point2{D<:SamplableBelief} <: AbstractRelativeRoots
RoME.Pose2Point2
— Typestruct Pose2Point2{T<:SamplableBelief} <: AbstractRelativeMinimize
Bearing and Range constraint from a Pose2 to Point2 variable.
RoME.Pose2Point2Bearing
— Typestruct Pose2Point2Bearing{B<:SamplableBelief} <: AbstractRelativeMinimize
Single dimension bearing constraint from Pose2 to Point2 variable.
RoME.Pose2Point2BearingRange
— Typemutable struct Pose2Point2BearingRange{B<:SamplableBelief, R<:SamplableBelief} <: AbstractRelativeMinimize
Bearing and Range constraint from a Pose2 to Point2 variable.
RoME.Pose2Point2Range
— Typemutable struct Pose2Point2Range{T<:SamplableBelief} <: AbstractRelativeMinimize
Range only measurement from Pose2 to Point2 variable.
RoME.Pose2Pose2
— Typestruct Pose2Pose2{T<:SamplableBelief} <: AbstractRelativeRoots
Rigid transform between two Pose2's, assuming (x,y,theta).
DevNotes
- Maybe with Manifolds.jl,
{T <: IIF.SamplableBelief, S, R, P}
Related
Pose3Pose3
, Point2Point2
, MutablePose2Pose2Gaussian
, DynPose2
, InertialPose3
RoME.DynPoint2VelocityPrior
— Typemutable struct DynPoint2VelocityPrior{T<:SamplableBelief} <: AbstractPrior
RoME.DynPoint2DynPoint2
— Typemutable struct DynPoint2DynPoint2{T<:SamplableBelief} <: AbstractRelativeRoots
RoME.VelPoint2VelPoint2
— Typemutable struct VelPoint2VelPoint2{T<:SamplableBelief} <: AbstractRelativeMinimize
RoME.Point2Point2Velocity
— Typemutable struct Point2Point2Velocity{T<:SamplableBelief} <: AbstractRelativeMinimize
RoME.DynPose2VelocityPrior
— Typemutable struct DynPose2VelocityPrior{T1, T2} <: AbstractPrior
RoME.VelPose2VelPose2
— Typemutable struct VelPose2VelPose2{T1<:SamplableBelief, T2<:SamplableBelief} <: AbstractRelativeMinimize
RoME.DynPose2Pose2
— Typemutable struct DynPose2Pose2{T<:SamplableBelief} <: AbstractRelativeRoots
RoME.Pose3Pose3
— Typemutable struct Pose3Pose3{T<:SamplableBelief} <: AbstractRelativeRoots
Rigid transform factor between two Pose3 compliant variables.
RoME.PriorPose3ZRP
— Typemutable struct PriorPose3ZRP{T1, T2} <: AbstractPrior
Partial prior belief on Z, Roll, and Pitch of a Pose3
.
RoME.PartialPriorRollPitchZ
— Typemutable struct PartialPriorRollPitchZ{T1, T2} <: AbstractPrior
Partial prior belief on Roll Pitch and Z of a Pose3
variable.
RoME.PartialPose3XYYaw
— Typemutable struct PartialPose3XYYaw{T1<:SamplableBelief, T2<:SamplableBelief} <: AbstractRelativeMinimize
Partial factor between XY and Yaw of two Pose3 variables.
To be deprecated: use Pose3Pose3XYYaw instead.
RoME.Pose3Pose3XYYaw
— Typemutable struct Pose3Pose3XYYaw{T1<:SamplableBelief, T2<:SamplableBelief} <: AbstractRelativeMinimize
Partial factor between XY and Yaw of two Pose3 variables.
Extending Caesar with New Variables and Factors
A question that frequently arises is how to design custom variables and factors to solve a specific type of graph. One strength of Caesar is the ability to incorporate new variables and factors at will. Please refer to Adding Factors for more information on creating your own factors.